Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Front Public Health ; 11: 1122095, 2023.
Article in English | MEDLINE | ID: covidwho-20245267

ABSTRACT

Introduction: The causal relationship between Coronavirus disease 2019 (COVID-19) and osteoporosis (OP) remains uncertain. We aimed to assess the effect of COVID-19 severity (severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, COVID-19 hospitalization, and severe COVID-19) on OP by a two-sample Mendelian randomization (MR) study. Methods: We conducted a two-sample MR analysis using publicly available genome-wide association study (GWAS) data. Inverse variance weighting (IVW) was used as the main analysis method. Four complementary methods were used for our MR analysis, which included the MR-Egger regression method, the weighted median method, the simple mode method, and the weighted mode method. We utilized the MR-Egger intercept test and MR pleiotropy residual sum and outlier (MR-PRESSO) global test to identify the presence of horizontal pleiotropy. Cochran's Q statistics were employed to assess the existence of instrument heterogeneity. We conducted a sensitivity analysis using the leave-one-out method. Results: The primary results of IVW showed that COVID-19 severity was not statistically related to OP (SARS-CoV-2 infection: OR (95% CI) = 0.998 (0.995 ~ 1.001), p = 0.201403; COVID-19 hospitalization: OR (95% CI) =1.001 (0.999 ~ 1.003), p = 0.504735; severe COVID-19: OR (95% CI) = 1.000 (0.998 ~ 1.001), p = 0.965383). In addition, the MR-Egger regression, weighted median, simple mode and weighted mode methods showed consistent results. The results were robust under all sensitivity analyses. Conclusion: The results of the MR analysis provide preliminary evidence that a genetic causal link between the severity of COVID-19 and OP may be absent.


Subject(s)
COVID-19 , Osteoporosis , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis/epidemiology , Osteoporosis/genetics
2.
Atmospheric Pollution Research ; : 101785, 2023.
Article in English | ScienceDirect | ID: covidwho-2308604

ABSTRACT

Hypertension is a common chronic disease, and air pollution is strongly associated with hypertension hospitalization. However, the association between nitrogen dioxide (NO2)1 concentration and hypertension hospitalization has rarely been studied. We collected daily data on hypertension hospitalizations, air pollutants, and meteorology from January 1, 2016 to October 31, 2021. After controlling for the effects of seasonal and long-term trends, weather conditions, weekdays, holidays, and during the novel coronavirus crown epidemic, a generalized additive model with over discrete Poisson regression was used to simulate the association between NO2 concentration and hypertension hospitalizations while quantifying hypertension hospitalizations, hospital stays, and hospital costs attributable to NO2. The results showed that each 10 μg/m3 increase in NO2 concentration was significantly associated with the relative risk (RR) of hypertension admission in Xinxiang, with the greatest effect at lag04 (RR = 1.107;95% confidence interval, 1.046–1.172). Hypertension hospitalizations attributed to NO2 during the study period accounted for 9.70% (484) of the total hypertension hospitalizations, equivalent to 4202 hospital days and 338.55 thousand United States dollars (USD). Increased NO2 concentration increases the risk of hypertension hospitalization in Xinxiang, which poses a significant health and economic burden to society and patients. The findings of this study provide a basis for developing stricter environmental pollutant standards.

3.
Sci Total Environ ; 881: 163485, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2306421

ABSTRACT

BACKGROUND: Short-term ambient ozone exposure has been shown to have an adverse impact on endothelial function, contributing to major cardiovascular diseases and premature death. However, only limited studies have focused on the impact of short-term ozone exposure on Flow-mediated Dilation (FMD), and their results have been inconsistent. The current study aims to explore the relationship between short-term ambient ozone exposure and FMD. In addition, the study aims to investigate how lockdown measures for COVID-19 may influence ozone concentration in the atmosphere. METHODS: Participants were recruited from a hospital in Shanghai from December 2020 to August 2022. Individuals' ozone exposure was determined using residential addresses. A distributed lag nonlinear model was adopted to assess the exposure-response relationship between short-term ozone exposure and FMD. A comparison was made between ambient ozone concentration and FMD data collected before and after Shanghai's lockdown in 2022. RESULTS: When ozone concentration was between 150 and 200 µg/m3, there was a significant reduction in FMD with a 2-day lag. Elderly individuals (age ≥ 65), females, non-drinkers, and non-smokers were found to be more susceptible to high concentrations of ozone exposure. The lockdown did elevate ambient ozone concentration compared to the same period previously. INTERPRETATION: This study proposes that an ambient ozone concentration of 150-200 µg/m3 is harmful to endothelial function, and that a reduction in human activity during lockdown increased the concentration, which in turn reduced FMD. However, the underlying mechanism requires further research.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Female , Humans , Aged , Air Pollution/analysis , Air Pollutants/analysis , Dilatation , China/epidemiology , Communicable Disease Control , Ozone/analysis , Particulate Matter/analysis , Environmental Exposure/analysis
4.
Environment and Behavior ; 54(9-10):1227-1250, 2022.
Article in English | APA PsycInfo | ID: covidwho-2260374

ABSTRACT

Most businesses have been severely affected during the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, as they lack sufficient cash reserves for turnaround in this devastated business environment. This study presents a nudge-based approach for encouraging employees to choose delayed but larger wage payment. Through two laboratory experiments and one field experiment, we found that blue light more likely promotes individuals choosing the farsighted intertemporal option (i.e., delayed but larger payment) than red light. We further investigated why blue light can promote such a farsighted decision and found that the intradimensional difference comparison-that is, comparing the difference between the two options in the time dimension (time A,B) and the difference in the payoff dimension (payoff A,B)-mediates the effect of blue (vs. red) light on intertemporal choice. The current study demonstrates the effectiveness of light color and provides a solution to nudge people to make farsighted choices. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

5.
Environmental Science: Nano ; 9(1):162-172, 2021.
Article in English | GIM | ID: covidwho-2288555

ABSTRACT

In this paper, we present the first idea of using a DNA triple helix structure to inhibit CRISPR-Cas12a activity and apply it to the design of an electrochemiluminescent biosensor for the detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) gene in real samples and environmental surveillance. We employed a segment from the RdRp gene of SARS-CoV-2 by an entropy-driven reaction, which was paired with double-stranded DNA that can activate CRISPR-Cas12a activity by Hoogsteen pairing to form triple-stranded DNA, thereby inhibiting the binding interaction of the double-stranded DNA with CRISPR-Cas12a, which in turn inhibits the trans cleavage activity of CRISPR-Cas12a. The inhibited CRISPR-Cas12a is unable to cut the nucleic acid modified on the electrode surface, resulting in the inability of the ferrocene (Fc) modified on the other end of the nucleic acid to move away from the electrode surface, and thus failing to cause electrochemiluminescence changes in GOAu-Ru modified on the electrode surface. The extent of the electrogenic chemiluminescence change can reflect the concentration of the gene to be tested. Using this system, we achieved the detection of the SARS-CoV-2 RdRp gene with a detection limit of 32.80 aM.

7.
J Hazard Mater ; 452: 131268, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2286471

ABSTRACT

In this study, we introduce an electrochemiluminescence (ECL) sensing platform based on the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). This platform combines a programmable entropy-driven cycling strategy, T7 RNA polymerase, and the CRISPR/Cas13a system to amplify the determination of the SARS-CoV-2 RdRp gene. The Ti3C2Tx-compliant ECL signaling molecule offers unique benefits when used with the ECL sensing platform to increase the assay sensitivity and the electrode surface modifiability. To obtain the T7 promoter, the SARS-CoV-2 RdRp gene may first initiate an entropy-driven cyclic amplification response. Then, after recognizing the T7 promoter sequence on the newly created dsDNA, T7 RNA polymerase starts transcription, resulting in the production of many single-stranded RNAs (ssRNAs), which in turn trigger the action of CRISPR/Cas13a. Finally, Cas13a/crRNA identifies the transcribed ssRNA. When it cleaves the ssRNA, many DNA reporter probes carrying -U-U- are cleaved on the electrode surface, increasing the ECL signal and allowing for the rapid and highly sensitive detection of SARS-CoV-2. With a detection limit of 7.39 aM, our method enables us to locate the SARS-CoV-2 RdRp gene in clinical samples. The detection method also demonstrates excellent repeatability and stability. The SARS-CoV-2 RdRp gene was discovered using the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). The developed ECL test had excellent recoveries in pharyngeal swabs and environmental samples. It is anticipated to offer an early clinical diagnosis of SARS-CoV-2 and further control the spread of the pandemic.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , Entropy , SARS-CoV-2/genetics , RNA-Dependent RNA Polymerase
8.
J Intensive Med ; 2(4): 282-290, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2246711

ABSTRACT

Background: High-quality evidence for whether the use of renin-angiotensin-aldosterone system (RAAS) inhibitors worsens clinical outcomes for patients with coronavirus disease 2019 (COVID-19) is lacking. The present study aimed to evaluate the effect of RAAS inhibitors on disease severity and mortality in patients with hypertension and COVID-19 using randomized controlled trials (RCTs) and propensity score-matched (PSM) studies. Methods: A literature search was conducted with PubMed, Embase, and Scopus databases from 31 December 2019 to 10 January 2022. We included RCTs and PSM studies comparing the risk of severe illness or mortality in patients with hypertension and COVID-19 treated or not treated with RAAS inhibitors. Individual trial data were combined to estimate the pooled odds ratio (OR) with a random-effects model. Results: A total of 17 studies (4 RCTs and 13 PSM studies) were included in the meta-analysis. The use of RAAS inhibitors was not associated with an increased risk of severe illness (OR=1.00, 95% confidence interval [CI]: 0.88-1.14, I2=28%) or mortality (OR=0.96, 95% CI: 0.83-1.11, I2=16%) for patients with hypertension and COVID-19. Furthermore, there was no significant difference in the severity of COVID-19 when patients continued or discontinued treatment with RAAS inhibitors (OR=1.01, 95% CI: 0.78-1.29, I2=0%). Conclusions: This study suggests that there was no association between treatment with RAAS inhibitors and worsened COVID-19 disease outcomes. Our findings support the current guidelines that RAAS inhibitors should be continued in the setting of the COVID-19 pandemic. However, the benefit of RAAS inhibitor medications for COVID-19 patients should be further validated with more RCTs.

9.
Immunology ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2246810

ABSTRACT

Given increased acceptance of the CoronaVac, there is an unmet need to assess the safety and immunogenic changes of CoronaVac in patients with rheumatic diseases (RD). Here we comprehensively analysed humoral and cellular responses in patient with RD after a three-dose immunization regimen of CoronaVac. RD patients with stable condition and/or low disease activity (n = 40) or healthy controls (n = 40) were assigned in a 1:1 ratio to receive CoronaVac (Sinovac). The prevalence of anti-receptor binding domain (RBD) antibodies and neutralizing antibodies was similar between healthy control (HC) and RD patients after the second and the third vaccination. However, the titers of anti-RBD IgG and neutralizing antibodies were significantly lower in RD patients compared to HCs (p < 0.05), which was associated with an impaired T follicular helper (Tfh) cell response. Among RD patients, those who generated an antibody response displayed a significantly higher Tfh cells compared to those who failed after the first and the second vaccination (p < 0.05). Interestingly, subjects with a negative serological response displayed a similar Tfh memory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides as their anti-RBD IgG positive counterpart, and all (4/4) of the non-responders in HCs, and 62.5% (5/8) of the non-responders in patients with RD displayed a positive serological response following the third dose. No serious adverse events were observed. In conclusion, our findings support SARS-CoV-2 vaccination in patients with RD with stable and/or low disease activity. The impaired ability in generating vaccine-specific antibodies in patients with RD was associated with a reduction in Tfh cells induction. The window of vaccination times still needs to be explored in future studies. Clinical trial registration: This trial was registered with ChiCTR2100049138.

10.
Sci Total Environ ; 859(Pt 1): 160172, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2232775

ABSTRACT

Unexpected outbreak of the 2019 novel coronavirus (COVID-19) has profoundly altered the way of human life and production activity, which posed visible impacts on PM2.5 and its chemical species. The abruptly emergency reduction in human activities provided an opportunity to explore the synergetic impacts of multi-factors on shaping PM2.5 pollution. Here, we conducted two comprehensive observation measurements of PM2.5 and its chemical species from 1 January to 16 February in Beijing 2020 and the same lunar date in 2021, to investigate temporal variations and reveal the driving factors of haze before and after Chinese New Year (CNY). Results show that mean PM2.5 concentrations during the whole observation were 63.83 and 66.86 µg/m3 in 2020 and 2021, respectively. Higher secondary inorganic species were observed after CNY, and K+, Cl- showed three prominent peaks which associated closely with fireworks burnings from suburb Beijing and surroundings, verifying that they could be used as two representative tracers of fireworks. Further, we explored the impacts of meteorological conditions, regional transportation as well as chemical reactions on PM2.5. We found that unfavorable meteorological conditions accounted for 11.0 % and 16.9 % of PM2.5 during CNY holidays in 2020 and 2021, respectively. Regional transport from southwest and southeast (south) played an important role on PM2.5 during the two observation periods. Higher ratio of NO3-/SO42- were observed under high OX and low RH conditions, suggesting the major pathway of NO3- and SO42- formation could be photochemical process and aqueous-phase reaction. Additionally, nocturnal chemistry facilitated the formation of secondary components of both inorganic and organic. This study promotes understandings of PM2.5 pollution in winter under the influence of COVID-19 pandemic and provides a well reference for haze and PM2.5 control in future.

11.
iScience ; 25(12): 105698, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2170550

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common lung disorder that involves severe inflammatory damage in the pulmonary barrier, but the underlying mechanisms remain elusive. Here, we demonstrated that pulmonary macrophages originating from ARDS patients and mice caused by bacteria were characterized by increased expression of ferroportin (FPN). Specifically deleting FPN in myeloid cells conferred significant resistance to bacterial infection with improved survival by decreasing extracellular bacterial growth and preserving pulmonary barrier integrity in mice. Mechanistically, macrophage FPN deficiency not only limited the availability of iron to bacteria, but also promoted tissue restoration via growth factor amphiregulin, which is regulated by cellular iron-activated Yes-associated protein signaling. Furthermore, pharmacological treatment with C-Hep, the self-assembled N-terminally cholesterylated minihepcidin that functions in the degradation of macrophage FPN, protected against bacteria-induced lung injury. Therefore, therapeutic strategies targeting the hepcidin-FPN axis in macrophages may be promising for the clinical treatment of acute lung injury.

12.
Infect Drug Resist ; 15: 7519-7527, 2022.
Article in English | MEDLINE | ID: covidwho-2197660

ABSTRACT

Objective: To analyze the impact of the new supervision and management methods of infection controllers on the protection of third-party personnel entering and leaving Shanghai Fangcang shelter hospital, to provide a reference for the management of third-party personnel in Fangcang shelter hospitals. Methods: A total of 200 third-party personnel received with traditional supervision and management methods, and 156 received new supervision and management methods from the Fangcang shelter hospital of the Shanghai International Convention and Exhibition Center. The sociodemographic characteristics of third-party personnel, including gender, age, education level, work experience in fighting the epidemic with safety awareness, was analyzed. The effects of the two different management modes on the protection of third-party personnel were statistically analyzed by the Chi-square test or logistic regression analysis. Results: There were statistically significant differences in the incidence of infection among third-party personnel in terms of age, education level, work experience in fighting the epidemic in traditional supervision and management group, and whether they accepted the new supervision and management model had statistically significant differences (p <0.05). The main causes of incorrect put on and take off protective clothing, such as wrong way to detach the face screen, wrong way to remove goggles, wrong way to undress protective clothing, wrong way to take off the shoe cover, hand washing steps omitted, are that causes infection of third-party personnel (p <0.05). Conclusion: The new supervision and management model can reduce the infection rate of third-party personnel in Fangcang shelter hospitals through planned and purposeful training in terms of different age groups, education levels, work experience, and acceptance of protection knowledge.

13.
Aerosol and Air Quality Research ; 22(12), 2022.
Article in English | ProQuest Central | ID: covidwho-2144300

ABSTRACT

Airborne aerosol is believed to be an important pathway for infectious disease transmissions like COVID-19 and influenza. However, the effects of dust event days on influenza have been rarely explored, particularly in arid environments. This study explores the effects of ambient particulate matter (PM) and dust events on laboratory-confirmed influenza in a semi-arid city. A descriptive analysis of daily laboratory-confirmed influenza (influenza) cases, PM (PM10 and PM2.5), meteorological parameters, and dust events were conducted from 2014 to 2019 in Lanzhou, China. The case-crossover design combined with conditional Poisson regression models was used to estimate the lagging effects of PM and dust events on influenza. In addition, a hierarchical model was used to quantitatively evaluate the interactive effect of PM with ambient temperature and absolute humidity on influenza. We found that PM and dust events had a significant effect on influenza. The effects of PM10 and PM2.5 on influenza became stronger as the cumulative lag days increased. The greatest estimated relative risks (RRs) were 1.018 (1.011,1.024) and 1.061 (1.034,1.087), respectively. Compared with the non-dust days, the effects of dust events with duration ≥ 1 day and with duration ≥ 2 days on influenza were the strongest at lag0 day, with the estimated RRs of 1.245 (95% CI: 1.061–1.463) and 1.483 (95% CI: 1.232–1.784), respectively. Subgroup analysis showed that pre-school children and school-aged children were more sensitive to PM and dust events exposure. Besides, we also found that low humidity and temperature had an interaction with PM to aggravate the risk of influenza. In summary, ambient PM and dust events exposure may increase the risk of influenza, and the risk of influenza increases with the dust events duration. Therefore, more efforts from the government as well as individuals should be strengthened to reduce the effect of PM on influenza, particularly in cold and dry weather.

14.
European journal of inflammation ; 20, 2022.
Article in English | EuropePMC | ID: covidwho-2126114

ABSTRACT

The purpose of this study was to investigate the expression of pyroptosis-related factors (NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD) in patients who died of COVID-19. The expression levels of NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD in lung and spleen tissues of the COVID-19 group and the control group were detected by tissue immunofluorescence. The control group includes lung tissues and spleen tissues of two patients who died unexpectedly without SARS-CoV-2 infection, and the COVID-19 group includes the lung and spleen tissues of three patients who died of SARS-CoV-2 virus infection. The positive rates of NF-κB, NLRP3, IL-18, and GSDMD in the lung tissues from the control group and COVID-19 group were 9.8% vs 73.4% (p = 0.000), 5.5% vs 63.6% (p = 0.000), 24.4% vs 76.2% (p = 0.000), and 17.5% and 46.8% (p = 0.000) respectively. The positive rates of NF-κB, NLRP3, IL-18, HMGB-1, and GSDMD in the spleen tissues from the control group and COVID-19 group were 20.6% vs 71.2% (p = 0.000), 18.9% vs 72.0% (p = 0.000), 15.2% vs 64.8% (p = 0.000), 27.6% vs 69.2% (p = 0.000), and 23% and 48.8% (p = 0.000), respectively. The positive rates of SARS-CoV-2 spike protein in the CD68 positive cells of the lung and spleen in the control group and COVID-19 group were 2.5% vs 56.8% (p = 0.000);3.0% vs 64.9% (p = 0.000) respectively. The rates of NF-κB positive nuclei in the control group and COVID-19 group were 13.4% vs 51.4% (p = 0.000) in the lung and 38.2% vs 59.3% (p = 0.000) in the spleen. The rates of HMGB-1 positive cytoplasm in the control and the COVID-19 group were 19.7% vs 50.3% (p = 0.000) in the lung and 12.3% vs 45.2% (p = 0.000) in the spleen. The targets of SARS-CoV-2 are the lung and spleen, where increased macrophages could be involved in the up-regulation of pyroptosis-related inflammatory factors such as NF-κB, HMGB-1, NLRP3, IL-18, and GSDMD.

15.
Zhongguo Bingdubing Zazhi = Chinese Journal of Viral Diseases ; - (5):385, 2022.
Article in English | ProQuest Central | ID: covidwho-2118820

ABSTRACT

The COVID-19 pandemic continues to rage worldwide and the SARS-CoV-2 Omicron variant has now replaced the Delta variant as the leading epidemic strain.Omicron, as one of the SARS-COV-2 variants, incorporates the most critical mutations of the Alpha and Delta variants, and is characterized by having multiple mutation sites, high viral load, stronger infectivity and immune escape, which significantly reduced the protective effect of the vaccine.However, compared with the previous SARS-CoV-2 strains, the Omicron variant is less likely to infect lung tissue, it usually causes mild clinical symptom with reduced hospitalization rate, severe disease rate and fatality rate.Three doses of allogeneic vaccine can offer better tolerance and immunogenicity, and improve the protective effect of the vaccines.The application of small-molecule antiviral drugs and neutralizing antibodies can significantly reduce the hospitalization rate and mortality rate.In this paper, the epidemiological and characteristics of the Omicron variant were reviewed in order to provide reference for clinical diagnosis and treatment of the disease.

16.
Sci Total Environ ; 857(Pt 1): 159339, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2061858

ABSTRACT

To avoid the spread of COVID-19, China implemented strict prevention and control measures, resulting in dramatic variations in urban and regional air quality. With the complex effect from long-term emission mitigation and meteorology variation, an accurate evaluation of the net effect from lockdown on air quality changes has not been fully quantified. Here, we combined machine learning algorithm and Theil-Sen regression technique to eliminate meteorological and long-term trends effects on air pollutant concentrations and precisely detect concentrations changes those ascribed to lockdown measures in North China. Our results showed that, compared to the same period in 2015-2019, the adverse meteorology during the lockdown period (January 25th to March 15th) in early 2020 increased PM2.5 concentration in North China by 9.8 %, while the reduction of anthropogenic emissions led to a 32.2 % drop. Stagnant meteorological conditions have a more significant impact on the ground-level air quality in the Beijing-Tianjin-Hebei Region than that in Shanxi and Shandong provinces. After further striping out the effect of long-term emission reduction trend, the lockdown-derived NO2, PM2.5, and O3 shown variety change trend, and at -30.8 %, -27.6 %, and +10.0 %, respectively. Air pollutant changes during the lockdown could be overestimated up to 2-fold without accounting for the influences of meteorology and long-term trends. Further, with pollution reduction during the lockdown period, it would avoid 15,807 premature deaths in 40 cities. If with no deteriorate meteorological condition, the total avoided premature should increase by 1146.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , Particulate Matter/analysis , Public Health , Environmental Monitoring/methods , Communicable Disease Control , Air Pollution/analysis , Air Pollutants/analysis , Cities , China/epidemiology , Machine Learning
17.
Sci Total Environ ; 849: 157881, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2049903

ABSTRACT

OBJECTIVES: To examine the impact of the Intercontinental Terminals Company (ITC) fire and COVID-19 on airborne particulate matter (PM) concentrations and the PM disproportionally affecting communities in Houston using low-cost sensors. METHODS: We compared measurements from a network of low-cost sensors with a separate network of monitors from the Environmental Protection Agency (EPA) in the Houston metropolitan area from Mar 18, 2019, to Dec 31, 2020. Further, we examined the associations between neighborhood-level sociodemographic status and air pollution patterns by linking the low-cost sensor data to EPA environmental justice screening and mapping systems. FINDINGS: We found increased PM levels during ITC fire and pre-COVID-19, and lower PM levels after the COVID-19 lockdown, comparable to observations from the regulatory monitors, with higher variations and a greater number of locations with high PM levels detected. In addition, the environmental justice analysis showed positive associations between higher PM levels and the percentage of minority, low-income population, and demographic index. IMPLICATION: Our study indicates that low-cost sensors provide pollutant measures with higher spatial variations and a better ability to identify hot spots and high peak concentrations. These advantages provide critical information for disaster response and environmental justice studies. SYNOPSIS: We used measurements from a low-cost sensor network for air pollution monitoring and environmental justice analysis to examine the impact of anthropogenic and natural disasters.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Communicable Disease Control , Environmental Justice , Environmental Monitoring , Explosions , Humans , Particulate Matter/analysis
19.
Journal of Hazardous Materials ; : 129868, 2022.
Article in English | ScienceDirect | ID: covidwho-2004220

ABSTRACT

Rapid and accurate discrimination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an available approach to implement a rapid diagnosis of the coronavirus disease 2019 (COVID-19). Here we fully exploited the cleavage properties of exonuclease III (Exo III) and hairpin DNA-assisted target cycling technology to generate bulk single-stranded DNA (ssDNA) that was employed to facilitate the constitution of a three-way junction structure on polymetallic particle (Ag-Au NPs) and Ti3C2 (Ti3C2@Ag-Au) complexes. Ag-Au NPs presented favorable stability without adding extra stabilizers, demonstrating the potential value of Ag-Au NPs as an alternative to Au NPs in the field of bioanalysis. Uppon the three-way junction structure, the dumbbell hybridization chain amplification (DHCA) was occurred which generated DNA nanostructure with tight conformation. Target cycling and DHCA reactions improved the electrochemiluminescence (ECL) signal, which dramatically advanced the assay sensitivity of SARS-CoV-2 (0.59 fM). Moreover, our strategy remained to demonstrate favorable specificity and repeatability in environmental conditions and real human serum samples.

20.
Emerg Infect Dis ; 28(8): 1624-1641, 2022 08.
Article in English | MEDLINE | ID: covidwho-1924007

ABSTRACT

We evaluated whether demographics and COVID-19 symptoms predicted COVID-19 deaths among healthcare workers (HCWs) in the United States by comparing COVID-19 deaths in HCWs with 3 control groups (HCW nondeaths, non-HCW deaths, and non-HCW nondeaths) using a case-control design. We obtained patient-level data of 33 variables reported during January 1, 2020-October 12, 2021, in all US states. We used logistic regression analysis while controlling for confounders. We found that persons who were >50 years of age, male, Black, or Asian experienced significantly more deaths than matched controls. In addition, HCWs who died had higher risks for the most severe clinical indicators. We also found that the most indicative symptoms were preexisting medical conditions, shortness of breath, fever, cough, and gastrointestinal symptoms. In summary, minority, male, and older HCWs had greater risk for COVID-19 death. Severe clinical indicators and specific symptoms may predict COVID-19-related deaths among HCWs.


Subject(s)
COVID-19 , Case-Control Studies , Fever , Health Personnel , Humans , Male , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL